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The transient response of a system of two concentric spherical elastic shells coupled by an
ideal fluid and Impinged by an incident plan pressure pulse Is analyzed. The classical techniques
of separation of variables and Laplace transforms are employed for solving the wave equations
governing the fluid motions and the shell equations of motion. A scheme of Iterative convolution
was devised for the inversion of the Laplace transforms that facilitates the calculation of accurate
transient solutions of the response of the shells. A sample calculation of shell responses was
performed and resul ts are compared to the case in which the outer shell is absent. This set of
results demonstrates that a thin outer shell tends to be transparent to the inciden t pulse. <—
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TRANSIENT RESPONSE OF
TWO FLUID-COUPLED SPHERICAL ELASTIC SHELLS

TO AN INCIDENT PRESSURE PULSE

INTRODUCTION

An underwater weak shock wave sufficiently far away from its generating explosion
source is often treated as an acoustic pulse. There is prolific literature on the studies of the
transient interaction among such pressure waves and single elastic shells of simple shapes 11 .21.
The results not only reveal many of the essential physical phenomena involved in the interac-
tion problem but also are quite useful for the verification of approximation methods for
predicting the underwater explosion response of submerged structures surrounded by an exte-
rior fluid medium of infinite extent 12-51. In the present endeavor , the transient response of a
system of two fluid coupled concentric spherical elastic shells impinged by an external incident
plane shock wave is analyzed . This purports to gain physical insight in the response as well as
to provide a data base for the development of general numerical methods for predicting the
underwater explosion response of fluid coupled shell systems such as the double hull section of
a submarine. The problem with the spherical geometry permits the separation of variables in
the wave equation governing the fluid motion and the shell equations of motion . The use of
Laplace transforms then facilitates the calculation of satisfactory transient solutions of the
response of the shells.

A paper appears in the Russian literature 161 indep endently dealing with exactly the same
problem. The results obtained , however , only pertain to the point-symmetric and the transla-
tional motions of the shells and these two terms of the series solution are insufficient for the
description of the complete shell response. It would also seem that the scheme of dual Volterra
integral equations for the calculation of the inverse Laplace transform used in Ref. 6 is un-
necessarily complex and numerically inefficient. It can be readily show n that only a single and
simpler integral equation is needed if this scheme is used.

In this report , a simple , straightforward method is devised for the inverse Laplace
transform , and the asymptotic behaviors of the shells are analytically discussed. An example
calculation is also carried out using eight terms of the series solution for adequate convergence
of shell displacements , velocities , and stresses. Time histories of the transient reponse of the
interior shell are presented. This example demonstrates that a thin exterior shell tends to be
transparent to the incident pulse.

Manuscript submitted December 16, 1977.



II. HUANG

Description of the Problem

Figure 1 sketches the fluid-coupled spherical shell system and the incident plane pre ssure
wave. The fluid surrounding the outer shell and that between the two shells are considered to
be ideal compressible fluids in linear wave motions and can be characterized by their unper-
turbed mass densities and sound speeds, i.e .. by (p ’ c’) and (p. c), respectively. The shells are
initiall y concentric. In this study, the strength of the incident wave is sufficiently weak such
that the shell deflections are elastic and small and the deviation from the concentricity rem ains
negligible for the time duration of interest. The mass densities. Young ’s moduli and Poisson’s
ratios of the outer and inner shells are (pr . E’. “ ‘) and (p1. E. a ’) . respectively. The middle
surface radii and thicknesses of the outer and inner shells are (a ’. h ’) and (a. h) , respectively.
The s-coordinate of the spherical system (r. 9. 0) is not shown in Fig. I since it is not needed
due to the symmetry of the problem. The origin 0 coincides with the unperturbed center of
the shells .

IlItlIlULlI U UlIllhlUllhll
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Fig. I — Geotnetty of the probless

The deflections of the inner shell in the a’ and 9-direction , norm alized with respect to the
outer shell radius a’, are denoted by w and a’ respectively and those of the outer shell by w’
and a” respectively. The total pressure field exterior to the outer shell is denoted by p’ (r . 0, 1)
and that between the shells by p ( r , 9. 0 where i designates time. The following dimensionless
parameters will be used in the mathematical formulation:

R — sr/ a ‘~ T — c’z/ a ’.~ a/a’,~ ) c, (I — 1),
— c ’/c , p, — p/p e, M — ,~ 

ea/ (p h), M’ — p eO e/ (p ehe) ,
11 — p / [ p ’(c ”) 2 1. H ’ —p ’/ [p ’(c ’) 21. I _ _j !

2 
(h/ a ) 2 , !’ _

~j!2 (h’/ a ’) 2,
C2 — E/ 1p5 ( 1 — v) ( c ’) 2 1, C,2 E ’/ Ip (l — v ’) (c ’) 2 1

F F (1 i a’ _ iao a0 IL O ~~O ~j ,I~~0 “0 “ c ’
am 

on (J + 1) C 2 (m(m + 1) — (1 — v)J/ ( I  + a’ ) .

(1 + I ’) Ce’(m(m + 1) — (I — v911(l + v ’) ~A m C2{2 + (1 + (m 2 + m + I )!J (m(m + I) — (1 — v) J / ( 1  + a ’ ) } ,

C2 ( 2 + 11 + (m 2 + m + I ) I ’1 Im (m + 1) — (1 v ’) I / ( l ÷ a’ ’)),

1~’m C~(m2 + in — 2) 11 — ÷ [m(m + I) — (1 — v ) )  x
Im (m + I )  — (I + v) ) ! / ( 1  — r ) ) / ( l  — a ’ )

on C,4 ( m 2 + m — 2 ) 11  —
~~~~
‘ + Lm(m + 1) — (1 — v ,1 x

Im (m + 1) — (I + v,) 1I ’/ ( l  — a’,) )/ ( 1 — a’, ) (1)
m — 1 . 2 , 3 
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II e and II satisfy the wave equations
~ 2l l .~— “ (2)
aT 2

and

v 2n ~~~~~~ (3)
aT 2

respectively, where V 2 is the Laplacian operator. The boundary conditions of the problem are
that fl e satisfies the radiation condition at far field and that

811 o h ’  8 2 w’ai R — I  (4)
OR OR or 2

and

— on — p , a t R  —~~ . (5)
OR

All quantities except the incident pressure field have quiescent initial conditions.

A Laplace transform pair is defined as

~ (0 . s) -‘~
j . w(9 . T) e ~~dT

w(0 , T) —1-—f ~ (0. s) e~~ds (6)
2ir , ~ —~~~~

whe re y lies to the right of all singularities of ~ in th e complex s-plane and ‘ ( ~ I ) I  2

Due to the spherical geometry of the problem , the solutions can be expanded in terms of
series of Legendre polynomials as the following.

n (R . o , T)  ~ tl m (R , T) P m (cos i 9)
m 0

He ( R, o, T) — Z n ~~
(R . T)P m (c oso)

w(0 , T) 
m 

wm ( T) Pm (cOs 9)  (7)

w ’(O , T) o n Z wt’ (7’)P (cosO)

dPm (C0S9)
u(9 , T) 

~~ Um (T)
rn ’°I

dP (cos O)
ue(~, T) — 

~~ 
u,~ ( T) ~

rn ’ I

where 1
~m is the Legendre polynominal of the first kind and mth degree.

3 
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in the Laplace transform domain , the equatio ns of motion of the elastic shells are 17)

— 
Af~Il m (~. S) ( C 2S 2 + a )

‘a’ 
~~~ + A ,,,~~

2S 2 +

~M ’Ul ,,~ (I. 5) — u rn ( I. s ))  (~2 + a ,~,)
‘“ 4 +~~ e 2 + ~Mm

m ‘0 . I . 2 (8)

(C 2s 2 + a m )IY,,, _ ( C2 + 
~ , 

~~~~~ ~m

(~2 + ~~~~~~ _ k n
2 + 

1 + / ‘  
°‘

~~~ ~~~~

m 1.2. 3 (9)

It should be noted that the solution method developed here is applicable for any linear elastic
theory for the sphe rical shells. The choice of the version in Eqs. (8) and (9) is for the compari-
son of results previously obtained in Ref. 7.

The total pressure field exterior to the outer shell 11 a’ consists of the pressure due to the
incident wave and those due to scattering and radiation by the outer shell An arbitra ry in-
cident plane pressure wave impinging the vertex of the outer shell (R — 1. 9 — 0) at T on 0
can be expressed by the following series (71

II’  (R . 9. s)  — f ( s) e  ~ ~~ (2m + I ) i,,, (Rs) P ,~ (cos0). (10)
rn -O

where f( s ) is the Laplace transform of the time characteristics of the incident wave and

~m (R s)  is the abbreviated notation for the modified spherical Bessel function of the first kind
liii (2Rs)  I 112f + 1/2 (Rs)  181.

Solutions In the Laplace Transform Domain

It can be shown that the solutions to the system of Eqs. (2) through (10) are:

H ,~ (R . s)  (2m + 1) f ( s) e  
“m (R s) k ,,, (5) — km (RS)l m (s)  1

k m (S)

— 

Si~~km I’RS) 
( 11)

k rn (5)

iL( R. s) on ,

c, ‘~m (C,~ S)k m (c,s) — 
‘na (CrS)k m (t’r~ 5) I

x ( (~~~k,,, (c ,~s)  — 

~ m’~m (c ,s)  I’m (c ,Rs)
— (w ,~,i ,,, (c,~

s)  — 

~ m~m (c,s) 1k m (c,Rs) I (12)
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— 
(2 ne + 1) 

~
e

2 f (s) M’(s 2 + ~,~,)( (c ’s~ + A mC 2S 2 + Mm )
A m (S) 2s

x tk m (c,s) i ,,(c , Cs) — 1 , (c,Cs) k ,, (c,s) I  + p,M~
1 (C 25 2 +

x 1I,~p (C,S)k~~(C,CS) — I~~~~,C5 )k ,p, (C,S)J1 (13)
— 

~:~~
‘ 

~s 2 1
~~

’ 2c,3 Cs 
p,MM’(~

2s 2 +a ,~) (s 2 +a ,~, ) . (14)
In the above equations km (s)  is th e abbreviated notation for the modified spherical Bessel
function of the third kind , (ir/2sJ 1”2

~~m + 1/2 (s) .  The prime denotes differentia t ion of the
Bessel functions with respect to their arguments , and

‘~m (
~~ 

. f ( C 454 + X m C 2S 2 + Mm ) (  (c,s) i ,,(c ,Cs) — k m (c,.Cs) i ,,,(c,s) l

+ p,M~~- (Os 2 + am ) hIm (C,5)km (C,C5 ) —

x Ikm (S) (S 4 + A~ s 2 + ~~~~ 
— M ’Sk m ( 5) ( s 2 + a~~)I

.._ .f!. M’s(s 2 + a,~,) ( C~s~ + A mC S  + M m ) n~~
)

x (k m (c j , Cs) i~~(c,s) — Im (CrCS)k m (CrS) I
2

+ MM’Cs 2 (~ 2 + a,~ ) (C 2~ 2 + am )km (5)

x fim (CrS)km (CrCS) 1,,(CrCS )km (C,5)I (15)

With use of the Tauber ’s theorem of Laplace transforms 19), some of the asymptotic
behaviors of the shell responses at late time can readily be revealed from Eqs. (13) and (14).
Specifically, for the case where the incident wave fl ’is  a unit step wave , i.e.,f(s) 1/s .

—2C 2c,2 (1 — C 3)M’ + 3C 3p,MM’
w~ (T) (16)

T— on 4C2C~c,2 (1 —
~~~

) + 6p, MC 3 C,2 + 6p,M’C2

and

—3Cp MM3
w0 ( T) on 

. ( I l )
T— oo 4C2 C,2 c,2 (1 — 

~~ + 6p,MC 3 C,2 + 6p,M’C2

These shell deflections occur long after the incident wave has engulfed the outer shell and can
also be found by static analysis.

Again , for the unit step incidence case,
wf ( T)  on

T— a.

— 3M ’( (I  +2~
2)p ,M+6 (1 —~

)I
6p,M(i +20) + 6M ’((I - C 3 ) + (2 +C 3 )p ,J +p,MM’(l +2C 3 +2p, (I j 3 ) J  +36(1 

~~~
(18)

5
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and
w1 (1’) —

—9p,MM ’
6p,M(I +2( i)  +6M’t(1 —0) + (2 +~ 3) p , I +p,MM’hI +2C~ +2p,(l —C ~)I +36( 1 —

~~~~~
)

(19)

where the dot denotes differentiation with respect to T. These are late time translation al veloci-
ties of the shells in the direction of propagation of the incident wave. It can be seen that the
only condition under which ia’1 at late ti me is p ,M on 3~ i n., when the inner shell is
neutrally buoy an t in the interior fluid. Otherw ise, they are not equal to each other. Therefore .
when interpreting the results of the present problem for large values of T, th e relative posi-
tions of the shell must also be examined . If , at some time , th e deviation from concentricity be-
comes excessive, the results of analysis thereafter are no longer physically meaningful.

Formulae (16) through (19) are convenient for parametric studies of the effects of van-
ous shell properties and fluid properties on the symmetric and translational responses of the
shells, and they are also quite useful for providing asymptotic checks for the numerical calcula-
tions.

The Inversion of the Transformed Solutions

The spherical Bessel functions can be expressed in finite series of elementary functions
181. If this property is used, the tra nsformed solutions , e.g., Eq. (14), can be rearra nged in the
following form:

— 
________________Wm (S) . (20)
‘4m (s)e ”5 — Bm (s)e “~

where
— _ 2 (_ I ) m + l ( 2 m  + l) ( p ,/ c,) f (s)MM F ( Cs) m41 (cr s) 2m +2 (5 2 + a,~, ) ( C 2s 7 + am )

‘4 m (5) (X m ~~~~ 
( —c,s)  (s4 + a,~S 2 + M,~,

) + M’s 2 (~ 2 + a ,~~) ~ ~
‘m ( S) X m (

— P,1’m ( 
~‘,5)

~
’m (5) I } ( 1m (C,C5) (C 45 4 + A mC 2S 2 + M m )

+ p,M~
2s 2 (~

2s 2 + a m ) Ym (c ,Cs) J
Bm (s) on (X m (S) Xm (c,s) (s4 + A~ s 2 + M,~

) + M’s 2 (~ 2 + a,~,) 
~ 1’m (5L

~
’n, (C,5)

— P,~
’m (CrS)Xm (s) 1) IXm ( ~~~~~~~~~~~~ ~~~~~~ + A mC

2
S

2 + Mn, )

+ P,MC 2S 2 (C 2S2 + a m ) Ym ( c,C s) 1
rn+I m

Xn, (s) — 

~~ 
(m + 3/2 , k) 2 —k5 m + I  —k — m  ~~ (in + I/2 . k) 2 ks~~~~k—O

on 

~~ (m + 1/ 2 , k) 2  —k 5 m — k

(m + 1/2 , k) on 

(21)6
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Both A ,, and 8m are (3m + 11 )th order real polynomials of s and , for the plane incidence
case, r ,, isa (3m + 6):h order real polynomial.

Equations of the form of Eq. (20) appear in many applied problems such as wave propa-
gation in layered media, t ransmission lines , etc. The exponential factors in the denominator
signify the reflections of waves, in the present case, to and from R on

~~ 
and R on I The di-

mensionless time for a disturbance to traverse the distance (1 — C) is ,j. There is a var i et y of
schemes for calculating the inverse Laplace transform of Eq. (20). One of the standardized
techniques is the D’Alembert expansion 1101 by which Eq. (20) can be rewritten as

F (s)e~~~ B 8 2

~~ fi +- ~-~- e 2’~’ +(-j~J e 4’hs +f_~
_
~ e ’

~” +

B ”
~~~~~~~ e 2”’~~+

n — 1 , 2. 3. . . .  (2 2)

Since 
~
1m is a real polynomial of s, its roots can be accurately computed by well-established nu-

merical procedures and the inversion of every individual term on the right-hand side of Eq.
(22) can then be obtained by the method of residue. The calculation of residues, however ,
would be rather clumsy for terms with 

~~ 
of high power. The following scheme utili z ing the

convol ution theorem is devised to circumvent this. From Eq. (22),
Wm (T) - w ~~( T — i p ) H ( T — i , )  + w ,~, ( T — 3, ~) + w ~~( T — 5 ~~) H ( T — 5 ~~)

+ . - .  + w,’, IT — (2n + 1) qI H (r  — (2n + 1 )i, J + • .  (23)

where His the Heaviside step function and

w,1,,( T) - w ~,( T) _
.l•

T

Gm (T_ ~r)W~,(l)dT .

w~,
( T) — w ,1,,l~T)

w,~ ( T) w,’,~~~( T) _
of Gm (T ~~w,~~~ (v) dr . (24)

In Eq. (24), w~, (71 and Gm (T)  are the inverse transforms of “m (s) I , 4n, ( s)  and
(A n, (s)  — Bm (s)  I / A m (s)  respectively. They are to be first accurately obtained by the method
of residue. This is quite practical with the current computing technology for up to moderate
values of m. For large in asymptotic expansions for the spherical Bessel functions can be used
and Am and Bn, will assume simpler forms. For the calculations of shell responses in the
present problem , large in terms are not needed. The successive convolutions required in Eq.
(24) can be conveniently programmed and carried out in a modern digital computer. Since
4, ( T)  and Gm ( T)  are composed of terms formed by an exponential multip lied by a tri-
gonometrical function , Trauboth ’s fast convolution integration algorithm 1111, which only re-
quiries about the same number of computation steps as for ordinary integration , is used here.

7
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It can be seen from Eqs. (23) and (24) that each successive integration advances the solution
time by 2irp and the number of successive integrations required depends on T and ‘~ . The con-
trol of numerical accuracy lies in finding the zeros of An, and the subsequent numerical in-
tegrations , and both are well established numerical techniques. Other quantities such as w,~, ( T)
can be found by the same procedure or calculated from their relationships with Wm.

Equation (20) can also be transformed into the following Volt err a integral equation:

W m (T )  wm (T —~~) H (T —
~~~~~) +~~~ Gm

(r)wm (T — 2 ~~~ 
— r ) H ( T  — 2 ~ — r) d t

— w ~, ( T — i r 1 ) H ( T — , 1) .  (25)

On close examination , however , the solution of Eq. (25) requires repeating exactly the same
convolutions as in Eq. (24). Therefore it is quite unnecessary to use the numerical techni ques
of integral equations , even if only one single integral equation is involved , for obtaining the in-
verse Laplace transform of Eq. (20). On the contrary , the use of two simultaneous Volterra in-
tegral equat ions for obtaining the inverse Laplace transforms of , and ~~~~~ , as in Ref. 6 would
have unduly increased the numerical difficulty and the computation effort.

Results and DiscussIons

Numerical results are obtained for a case in which both shells are made of steel and both
fluids are water. The material n’operties and dimensions used are such that

C, 0, ~~i . c2 — C ~ — 17.79133

M ’ — 32.09875 . M — 6.41975
on 1/250 . h/a on 1/50

~ — 0.8. q — 0.2. (26)

The incidence is a step wave with f( s ) — 1/s. The transient responses of the shells are calcu-
lated for four transit times of the incident wavefron t , i.e., T — 0 to 8. For this duration of time ,
it requires twenty successive convolution integrations in Eq. (24) . The parabolic rule is used for
the numerical integration in conjunction with Trauboth’s fast convolution scheme. Since nu-
merical roundoff and truncation errors accumulate at each successive integration , the integra-
tion intervals Ar are kept sufficiently small to minimize these errors. The roots of 4 m (s) , and
from these , 4, ( T) ,  and Gn, ( T) , are evaluated with high accuracy before starting the convolu-
tion integration. It is also found that , similar to the case of a single shell (71, eight terms
(m on 0 — 7) in the series solution are sufficient for the representations of the shell
defiections , velocities, and stresses. The integration intervals used are: Ar 0.01 for w0 and
w1,  Ar — 0.0025 for w2, and Ar — 0.00125 for the higher terms. If the solution must be car-
ried out for shorter time duration , say up to T on 4, a much coarser Ar will suffice.

In all subsequent figures , the present solutions are ploted in dotted lines and compared to
the solutions obtained by the method of Ref. 7 and plotted in solid lines for the case in which
the outer shell is absent.

Figure 2 shows the results for the w0’s and 
~~~ 

‘s. Similar to the single-shell case, the
present results approach their respective asymptotic values after about two transit times, and

8 
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r- tr—~,ti~

Fig. 2 - Time histories of w0 vid

the nu merical asymptotes of w0 and i’1 agree with formulae (17) and (19) respectively within
th ree digits. These results are indicative of the accuracy of the present solution computation
scheme. For this particular example , the outer shell is rather thin and its effect on the response
of the inner shell is observable in the w0, w1, and w2 terms. Its effect on the higher modes of
the in ner shell, i.e., Wm with m > 2, is quite undiscernible. Sample results for higher wn,’s are
exhibited in Fig. 3. It can be seen there that the present results for w3 and w4 coalesce with
the respective results for the outer shell absent case. The same can be said about w5, w6, and
w7, and they are not replotted here.

~

+‘
, 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

V —

Fig. 3 — Time histories of w2, u’s. m d  Ia’4
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Eight terms of w ,’s are summed in Eq. (7) for representing the total response of the
inner shell . Figure 4 plots the time history of the relative radial deflection between the two
ape xes of the inner shell. The presence of the outer shell causes a downward shift of the curve
representing the present result. This is due to the diminished w0 term.

Figure 5 shows the time histories of the radial velocities of the same two apexes. The
presence of the outer shell causes a slight reduction of the velocities with little alteration of
their profiles. Again this can also be expected by observing the slight reduction of the i~ term .

A 
_ _ _ _ _ _ _ _ _ _

1

0 
_ _

Fig. 4 — Retative radial deflection between the Fig. 5 — Time histories of radial veloci ties at the
apexes of the inner shell apexes of the Inner shell

It is reiterated here that the series solution in the form of Eq. (7) is not effective for ob-
taining the early time acceleration and pressure if the incident wave has a steep front. The cus-
tomary remedy is to apply a modified Watson ’s transfo rm to Eqs. (I i )  through (14) and calcu-
late the asymptotic results for large s (11. This is, however , much more complex than the single
shell case studied in Ref . 12 , and is outside the scope of the present report.

The polar membrane stress (force per unit length) NR and the hoop membrane stress N~
are calculated by

N, on (1 ~~
‘

) M C 1( 1 + v) w  + -
~~~~~ + vu cot # 1 (27)

and

N~ (1 + v) MC 
( ( 1  + v ) w  + v -~

J- + u cot 01. (28)
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The time histories of the polar and/or hoop stress at 9 — ir/2 and at II — a’ are plotted in
Fig. 6 and 7 respectively. The shielding of the outer shell reduces the stresse s slig htly . The
mean stresses also decrease in proportion to w0. The maximum stresses occur after the incident
wave has completely engulfed the outer shell and are about twice the corresponding static
values.

I I I I

I I I I
-i.o . A - -1.0 - -

-0 8 -  • .
~~~~~~~

. -

-0.6 - •‘ • - .0.6 -

f -‘I ~-l• -0.4 - .!~~ 
-0.4

j ~ : -

-0.2 -  . • - -0.2 - . -

•_ •• 
• S •

‘SC %- C,

0.2 - - 0.2 - -

I I I I I I I I
U 2 4 6 8 10 0 2 4 6 8 10

V — (T -~ V — (1—

Fig. 6 — Time histories of the polar stress at Fig. 7 — Time histories of the polar and hoop
O = - 1r12 stresses a t O ir

All results of the present example infer that a thin outer shell tends to be transparent to
the incid ent pulse.

In conclusion , it can be said that an accurate solution method for this problem has been
developed and can be used for parametric studies. Moreover , a set of nu merical results has
been meticulously obtained to serve as a data base for the development of numerical methods
for the analysis of the transient response of double hulls of practical configurations. One im-
mediate scheme is to apply the currently available Doubly Asymptotic Technique (2) in the
outer fluid field and the fluid finite element technique for the entrained fluid.
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